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Study of weighted space deconvolution algorithm in
computer controlled optical surfacing formation
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Theoretical and experimental research on the deconvolution algorithm of dwell time in the technology of
computer controlled optical surfacing (CCOS) formation is made to get an ultra-smooth surface of space
optical element. Based on the Preston equation, the convolution model of CCOS is deduced. Considering
the morbidity problem of deconvolution algorithm and the actual situation of CCOS technology, the
weighting spatial deconvolution algorithm is presented based on the non-periodic matrix model, which
avoids solving morbidity resulting from the noise induced by measurement error. The discrete convolution
equation is solved using conjugate gradient iterative method and the workload of iterative calculation in
spatial domain is reduced effectively. Considering the edge effect of convolution algorithm, the method
adopts a marginal factor to control the edge precision and attains a good effect. The simulated processing
test shows that the convergence ratio of processed surface shape error reaches 80%. This algorithm is
further verified through an experiment on a numerical control bonnet polishing machine, and an ultra-
smooth glass surface with the root-mean-square (RMS) error of 0.0088 µm is achieved. The simulation
and experimental results indicate that this algorithm is steady, convergent, and precise, and it can satisfy
the solving requirement of actual dwell time.
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More and more aspheric surfaces are used in optical sys-
tems. Due to the unique geometric shape of aspheric
surfaces, the manufacture difficulty and cost of aspheric
surfaces are greatly higher than that of spherical surface
optical elements[1,2]. A breakthrough of modern space
optical element processing technique is computer con-
trolling “small grinding tool” to polish the element. The
processing technology is often referred to as computer
controlled optical surfacing (CCOS) technology, namely
computer-controlled optical surface shaping technology.
CCOS technology is limited to the computer controll of
small grinding tool for polishing, the processing princi-
ple is based on the Preston hypothesis, and the polishing
process can be modeled. So this method is also known as
the deterministic polishing technique[3]. Currently, ex-
cept computer-controlled polishing (CCP), the develop-
ing CCOS technology includes many representative tech-
nologies, such as the dynamic stressed lap polishing tech-
nology, magnetorheological finishing technology[4], and
ion beam polishing technology[5] . The common charac-
teristics of these technologies are a computer-controlled
“small grinding tool” polishing on the surface of optical
components. In the processing of large-scale optical com-
ponents, particularly in non-spherical optical parts pro-
cessing, these CCOS technologies are increasingly being
applied. Bonnet polishing with novel polishing tool and
special motion trait is a high precision and efficient opti-
cal component machining method, especially for aspheric
surface machining[6−8]. It is a new polishing method pre-
sented by London Optical Science Laboratory and has an
extensive application prospect.

In CCOS technology, the solving algorithm of dwell
function is the key factor affecting the processing ef-
ficiency and error convergence. Based on the Preston
equation, the material removal amount can be derived
from the convolution between dwell time and removal
function. Thus solving the dwell function is a deconvo-
lution essentially. But the deconvolution solution is al-
ways a pathological problem. The popular algorithms
of solving dwell time function are iterative algorithm
and Fourier transform[9]. Iterative algorithm adopts ap-
proaching method in numerical calculation, but the dis-
advantage is that the iterative convergence rate is slow.
Furthermore, this approach will oscillate without con-
vergence under certain circumstances. Fourier transform
method changes the convolution to product operation by
Fourier transform, and then the inverse Fourier transform
can be done to obtain the final result. The computation
amount is smaller than that of the iterative method, but
it is difficult for Fourier transform when the removal func-
tion is close to zero, and the results need special treat-
ment, especially it cannot guarantee convergence. The
algorithm to solve dwell time function based on different
optical processing methods has been researched in recent
years. For example, the distribution of dwell time was
obtained according to linear algebra and Tikhonov regu-
larization by Deng et al.[10], and a discrete linear model
was established by Zhou et al. to analyze the relationship
between the dwell time and removal amount by L-curve,
further to calculate the dwell time[11]. These two meth-
ods changed the fabrication process from convolution to
matrix product based on linear algebra to solve the ill-
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posed problem caused by noise. In theory, the methods
obtained satisfying numerical results, but the calculation
quantity was large and the edge effect problem in actual
process was not considered.

Weighted spatial deconvolution algorithm, based on
the non-periodic matrix model, can avoid the morbidity
problem of solving deconvolution, allowing the sequence
of convolution and convolution kernel alternate iteration
estimation, and in the space domain iterative algorithm
can reduce the workload of calculation. Aiming at the
edge effect of convolution, a marginal modified factor is
introduced to control the edge precision. We have gained
a good result by using this approach. An ultra-smooth
optical surface is obtained through verification of a pro-
cess experiment.

Optical surface grinding and polishing are constrained
by many factors and the quantitative control is very dif-
ficult. The mathematical model commonly used to de-
scribe the optical surface for processing is the Preston
equation[1]:

∆h(x, y) = k · ν(x, y) · p(x, y), (1)

where ∆h(x, y) is the Removal rate in unit time of
point(x, y); k is the processing factor related to the work-
piece material, polishing type, polishing liquid, and tem-
perature of work area; ν(x, y) is the instantaneous rela-
tive velocity of polishing pad at point(x, y); p(x, y) is the
instantaneous pressure of polishing pad at point(x, y).

An assumed condition is that the value of removal func-
tion is invariable with time and space. We define the
average removal value of surface materials r(x, y) in unit
time T as the polish pad removal function, namely:

r(x, y) =
1
T

∫ T

0

∆h(x, y) · dt

=
1
T

∫ T

0

k · ν(x, y) · p(x, y) · dt. (2)

As shown in Fig. 1, during the process, the tool dwells
for a certain time d(x, y) at each point. When the re-
moval function is polishing at point o(α, β), the function
has different impacts on the circle domain centered at
o(α, β), and the radius is r0. When the polishing pad
moves to the point p(x, y) in accordance with the sched-
uled track, the removed material in each region will be
superimposed. So we can get the distribution function
h(x, y) of the entire processing surface material removal
amount:

h(x, y) =
∑
α

∑
β

[d(α, β) · r(x − α, y − β)]δαδβ. (3)

When δα and δβ reach zero, Eq. (3) can be written as

h(x, y) =
∫

α

∫
β

d(α, β) · r(x − α, y − β)dαdβ. (4)

The integral formula (4) shows that the surface ma-
terial removal amount h(x, y) is equal to the two-
dimensional (2D) convolution along with motion track
between the polishing removal function r(x, y) and the
dwell time d(x, y):

h(x, y) = r(x, y) ∗ ∗d(x, y). (5)

Fig. 1. Superposition of material removal.

r(x, y) is related to the size of polishing pad and mate-
rial properties, work pressure, relative velocity, and other
factors, which can be obtained through computer simu-
lation and test technology. h(x, y) is the surface shape
error distribution, which is determined by measurement.
When we have known r(x, y) and h(x, y), the dwell time
function d(x, y) can be obtained through iterative opera-
tion. Choosing reasonable parameters based on the above
analysis, computer numerical control (CNC) documents
are generated under the control of computer. The grind-
ing tool moves on the optical surface, abiding specific
path, speed, and pressure. By controlling the dwell time
of each region, the goal is achieved, which amends the er-
ror and enhances the accuracy. The residual error after
process is

e(x, y) = h(x, y) − r(x, y) ∗ ∗d(x, y). (6)

For obtaining the removal amount in the next step, the
polishing process is needed once again, which can grad-
ually increase the surface accuracy. These steps are a
repeatedly iterative process, and will gradually converge
to the ideal shape.

According to the above analysis, firstly, the dwell time
of each manufacturing point is solved by deconvolution
in the procedure of CCOS. Then the removal amount of
every point is controlled by dwell time of this point, and
the control of machining accuracy and surface conver-
gence rate depends on the accuracy of solving deconvo-
lution. Deconvolution, whose solution is a pathological
problem, belongs to the first Fredholm integral equation
category in mathematics. The quantity of awaiting pro-
cess is a limited discrete convolution in the CCOS proce-
dure. In non-periodic matrix model, it is assumed that
the size of dwell time matrix is smaller than the matrix
of surface error, as a guarantee for the unknown variant
number less than the number of equations. Thus solving
an underdetermined problem is transformed to solving
an over determined problem[9]. Weighting the spatial
deconvolution algorithm based on the non-periodic ma-
trix model can avoid the morbidity problem of solving
deconvolution, allowing the sequence of convolution and
convolution kernel alternate iteration estimation, and in
the space domain the iterative algorithm can reduce the
workload of calculation.

If the size of the unknown sequence x(m1, n1) is as-
sumed to be smaller than the known one y(m2, n2), it is
feasible to estimate the unknown sequence with a smaller
size according to the known one. In the one-dimensiond
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(1D) case, the length of the convolution kernel sequence
is assumed to be M . The length of the sequence {x(n)}
is N . Then the length of the convolution sequence L is
L = M + N − 1. The form of the equations is

h0

h1 h0

... h1
. . .

hM−1

...
. . .

hM−1 h0

. . . h1

. . .
...

hM−1


·


x0

x1

...

...
xN−1

 =


y0

y1

...

...
yL−1

 . (7)

The concise form of Eq. (7) is Fhx = y, where Fh is
named convolution kernel matrix, whose size is L × N .

In the 2D case, when the sizes of matrices h(m1,m2),
x(n1, n2), and y(l1, l2) are assumed to be M1×M2,
N1×N2, and L1×L2, L1 =M1 +N1−1, L2 =M2 +N2−1,
the convolution equation is deduced to be F(h,N1,N2)x =
y. The convolution kernel matrix F(h,N1,N2) is evolved
from h. There are N1 matrix columns in F(h,N1,N2) and
N2 columns in submatrices in every matrix column. The
expansion equation is

F(h,N1,N2) =

F(h1,N2)

F(h2,N2) F(h1,N2)

... F(h2,N2)

. . .

F(hM1,N2)

... F(h1,N2)

F(hM1,N2) F(h2,N2)

. . .
...

F(hM1,N2)


, (8)

where hi is a vector, which is formed with the ith row
of h(m1,m2), F(hi,N2) is a 1D convolution kernel matrix.
Then the size of F(h,N1,N2) is L1L2 ×N1N2. In this way,
F(x,M1,M2) is evolved from x and the size is L1L2×M1M2.

The deconvolution model of the last non-periodic ma-
trix is in accordance with the solution of the dwell time
in CCOS essentially. In the process of CCOS, it is as-
sumed that the edge of polished die is within the work-
piece boundary, then the spatial distribution of the dwell
time is smaller in size than the surface error, and the mea-
surement of the surface error is equivalent to the sum
of the sizes of the dwell time and removal function. It
ensures that the quantity of the unknown variables is
less than the one of the equations and will improve the
ill-conditioned characteristic of the problem. Further-
more the surface error itself is a finite discrete convolu-
tion and the non-periodic convolution matrix is always
non-singular, which has a much smaller condition num-
ber under any circumstances, and is not sensitive to the

length of convolution and the changes of the Rernel func-
tion. For these reasons, it will obtain an accurate result
using non-periodic matrix model.

Giving locally adaptive control to deconvolution and
smooth is the main idea of weighted space deconvolution
algorithm. This approach can strengthen the smoothness
and weaken the deconvolution in the flat region of sur-
face error. Contrarily, near the edge the deconvolution is
strengthened and the smoothness is weakened. Weaken-
ing the deconvolution in the flat region will weaken the
noise amplification, and thus the total effect of the solu-
tion can be improved. The residual error of deconvolu-
tion is bounded, and the remaining errors are associated
with noise. In order to overcome the morbidity prob-
lems of deconvolution, the equation should be regularized
to guarantee the second order derivative’s norm square
‖x′′‖2 to the smallest. In discrete circumstances, through
replacing the second order derivatives by the second or-
der difference, x(m,n) ∗ c(m,n) can be used to calculate
the second order difference of x(m,n). The second order
differential operator is

c(m,n) =
1
8

[ 0 1 0
1 −4 1
0 1 0

]
, (9)

which is also called the Laplace operator. Define two
restrictive conditions:

‖y − Bx‖ ≤ ε and ‖Cx‖ ≤ E, (10)

where ε and E are the specified borders. Choosing the
value of ε is decided by the noise energy from the er-
ror of surface measurement. Similarly, E relies on the
high frequency energy from allowable surface error. For
controlling the local adaptability of deconvolution, two
weighted matrices are introduced, so the result is

‖y − Bx‖R=
[
(y − Bx)TR(y − Bx)

] 1
2 ≤ ε, (11)

‖Cx‖S = [(Cx)TS(Cx)]
1
2 ≤ E, (12)

where R and S are two diagonal matrices, which include
the weight coefficients rij and sij influencing each sam-
pling point. The role of rij is ensuring the edge preci-
sion of surface error, controlling the nonstationarity with
the variation of noise, and enhancing the recovery of the
missing data. Meanwhile, the value of sij can control the
smoothness locally to eliminate the ring shape parasitic
ripple. Combining Eqs. (11) and (12), we can get

Jw(x) =
[
(y − Bx)TR(y − Bx)

]
+α[(Cx)TS(Cx)] ≤ 2ε2, (13)

where α = ( ε
E )2. Minimizing Jw(x), we can obtain

(BTRB + αCTSC)x ≤ BTRy. (14)

Matrices B and C are non-periodic convolution ker-
nel matrices, especially, denoted as Fh and Fc. Then we
resolve

(FT
h RFh + αFT

c SFc)x ≤ FT
h Ry. (15)
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For a faster convergence, conjugate gradient approach
is adopted in the application of this algorithm. The equa-
tion after regularization is in well-condition. So the key
steps of resolving the inequality (15) by conjugate gradi-
ent approach is

Fig. 2. Flowchart of deconvolution algorithm.

Fig. 3. Original measurement results.

Fig. 4. Dwell time.

Fig. 5. Residual error.

q = (FT
h RFh + αFT

c SFc)p. (16)

Replacing Fhp by h∗p in iteration can reduce the com-
putational complexity. p is the iterative initial and q
is the iterative vector of the equation. The calculation
flowchart is shown in Fig. 2.

In order to verify the effectiveness of the approach,
we simulate the algorithm with the actual measurement
results. Without loss of generality, an 80 × 80 (mm)
square plane is chosen as the workpiece to be processed,
and the measurement results are shown in Fig. 3. The
root-mean-square (RMS) value is 0.0209 µm (0.033λ, λ=
0.6328 µm). In order to get the dwell time of every
point within the whole processing region, the original
measurement data are dealt with edge extension, and
the extension point number relies on the removal func-
tion value. The removal function can be measured by
means of experiments. Figure 4 shows the simulated
dwell time. Figure 5 shows the simulated residual er-
ror. The final surface RMS value of the workpiece is
0.0146 µm.

The edge effect is inevitable in convolution[12]. In order
to control the edge accuracy, an edge correction factor is
proposed in the algorithm, that is, the original surface
data on the edge are amended. Supposing that ∆z(x, y)
is the specified edge surface shape error, ∆z1(x, y) is the
modified edge residual error, R(x, y) is the removal func-
tion, ε(x, y) is the optimized edge processing residual er-
ror, and α is a modifying factor, we have

∆z1(x, y) = ∆z(x, y) + α · ε(x, y). (17)

The edge modifying factor α can be obtained when the
RMS value of ∆z1(x, y) is the minimum.

Figure 6 is the amendment process flowchart. Figure
7 shows the residual error after the edge compensation.
The RMS value reaches 0.0071 µm and the convergence
ratio of RMS value is more than 80%. The simulation
results show that the algorithm is steady, convergent,
and precise, which can meet the request of solving actual
dwell time.

The processing experiment was achieved in a bonnet
CNC polishing machine. The experimental piece was
just the piece used in the simulation, a nucleated glass
material. After 70 min of polishing processing, the RMS
value of the surface accuracy reaches 0.0088 µm (0.013λ).
The experimental results shown in Fig. 8 prove the ef-
fectivity of the algorithm. At present, the software to
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Fig. 6. Flowchart of marginal compensation algorithm.

Fig. 7. Residual error after marginal compensation.

perform the algorithm has been completed.
In summary, compared with the traditional manual

polishing process, the CCOS process, which has high
certainty and fast surface convergence, basically does
not rely on the skill level and experience of the tech-
nologist. The solving algorithm of dwell function is the
key factor which is effective on processing efficiency and
error convergence. We present the weighting spatial
deconvolution algorithm based on the non-periodic ma-
trix model, solve the discrete convolution function by
the conjugate gradient iterative method, and test the
algorithm by simulation and experiments. The results
show that this algorithm is stably convergent, highly
accurate, and can avoid the morbidity problem. Fur-
thermore, the algorithm introduces the edge correction

Fig. 8. Processing results.

factor, which effectively controls the edge precision.

This work was supported by the National “863” Pro-
gram of China.
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